

Robopager

[image: PyPI Version]
 [https://badge.fury.io/py/robopager][image: Codacy Badge]
 [https://app.codacy.com/gh/equinoxfitness/robopager?utm_source=github.com&utm_medium=referral&utm_content=equinoxfitness/robopager&utm_campaign=Badge_Grade_Dashboard][image: Code Quality Grade]
 [https://www.codacy.com/gh/equinoxfitness/robopager?utm_source=github.com&utm_medium=referral&utm_content=equinoxfitness/robopager&utm_campaign=Badge_Grade][image: Coverage]
 [https://www.codacy.com/gh/equinoxfitness/robopager?utm_source=github.com&utm_medium=referral&utm_content=equinoxfitness/robopager&utm_campaign=Badge_Coverage][image: Code of Conduct]
 [https://github.com/equinoxfitness/robopager/blob/master/CODE_OF_CONDUCT.rst]Robopager is a job monitor and notification tool designed for daily
email check and job latency check. The daily email check function can
help you to monitor your inbox and whether you receive the expected
emails at a certain time on a daily basis. The job latency check
function helps to monitor every few seconds or minutes whether your
scheduled workflows finish on time. If emails are not received in an
expected timeframe or the scheduled jobs don’t complete on time, you
will receive the alerts from PagerDuty in email, text message or phone
call depending on your choice.

Installation

Robopager requires Python 3.6+

python3 -m venv <virtual environment name>
source <virtual environment name>/bin/activate
pip install robopager

Setup Instructions

Before start using this tool, you need to configure the settings in the
etl.cfg and create your checklist.yaml file. You can find
example files above and change to your own values. Detailed explanations
as below.

1. etl.cfg

This file contains the loggin or server information of the applications
or services that will be used in this tool, such as your monitored
email, PagerDuty service and other servers. It also has the settings for
you to choose the function mode.

	google_apps: enter the email address you want to monitor and use
b64encode to encrypt your password for security concerns

	pager_duty: enter the information of the subdomain you will use and
the API access key for authentication

	enable_redis: enter “True” if you want to use Redis, which is highly
recommended because of API rate limit in PagerDuty; otherwise
“False”. Please refer to Note section for more information about
Redis and please refer to this link [https://v2.developer.pagerduty.com/docs/rate-limiting]
for more details about API rate limit.

	redis: enter the server and database information to get access to
redis database, if you opt to use redis to store the job cache

	batchy: enter the server and port information to connect to your
scheduled batch jobs

	function_type: you can enter either “email” for daily email check or
“batchy” for intraday job latency check or both, separated by comma

	heartbeat: enter the “Integration Key” of the startup service created
on PagerDuty. It usually consists of 32 characters. Since we
recommend users to restart the robopager application at regular
intervals to avoid the unnecessary crash-down of the checks,
heartbeat as a service can notify user that robopager has restarted
successfully

	timezone: your local timezone to make sure the correct delivery time.
You can use the code below to search the correct timezone:

import pytz
for tz in pytz.all_timezones:
 print tz

2. checklist.yaml

This file lists the information of all the jobs that you want to
monitor. Each job must have a unique name. You could find examples below
for both types of job.

Daily Email Checks

	type: email

	pd_description: a brief description of the check job

	pd_service: the “Integration Key” of a PagerDuty service only for this
specific job, usually consists of 32 characters

	senders: list of senders that robopager will be monitoring
for particular emails

	delivery_time: the expected delivery time of emails you are monitoring;
emails received before this time will not be scanned.
Please pay attention to your local timezone

	check_time: the time at which robopager actually starts checking for delivery.
Even if an email is expected to arrive at 7:00AM we may wait untill 7:15 to
account for minor latency and avoid false alarms. Please pay attention to
pass the time that is in the same timezone where you run the jobs,
such as your local computer or cloud server, etc.

	subjects: a list of email subjects requires to satisify the check

unique_email_check_job_name:
 type: email
 pd_description: "Check whether you are OK"
 pd_service: 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'
 senders: ['email_address@gmail.com']
 delivery_time: 03:00
 check_time: 03:15
 subjects:
 - "Great - You look awesome!"
 - "Good - You look OK!"

Intraday Latency Check

	type: batchy

	pd_description: a brief description of the check job

	pd_service: the “Integration Key” of a PagerDuty service only for
this specific job, usually consists of 32 characters

	wf_name: name of the scheduled workflow you want to monitor,
please enter the correct and accurate name

	check_time: the time at which robopager actually starts checking

	poll_sec: the number of seconds in between checks

	latency_min: when it has been more than x minutes from last end time
a failure will be generated, warnings at 80% of threshold

unique_latency_check_name:
 type: batchy
 pd_description: "intraday latency check for xxxx job"
 pd_service: "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
 wf_name: "intraday_latency_check"
 check_time: "09:00"
 poll_sec: 180
 latency_min: 60

Quick Start

After finish all the setups above, you can start to use the tool to help
monitor you scheduled jobs.
Robopager has two modes:

	Single Job Mode: This will run the specific check and exit when complete. Execute with
a -c parameter and a specific job name you want to run. For example:

python3 -m robopager.robopager -c unique_email_check_job_name -y checklist_file_path
-cf core -p config_file_path

	Service Mode: This will execute all the check jobs in the
checklist.yaml file.

python3 -m robopager.robopager -y checklist_file_path -cf core -p config_file_path

Notice: This module uses datacoco_core’s config() to parse the
configuration file as default. We also integrate AWS Secret Manager as
alternative configuration method to retriece your credentials but this
function is still in progress. Please check back for update. The
parameter “-cf” in command line is to choose whether using datacoco or
secret manager

Notes

	Redis: The main purpose of using Redis is to prevent Robopager
from being annoying. Using Redis allows PagerDuty to store the
incident history data in it. PagerDuty will check the state of the
last run in Redis and only create a new incident if the same key of
last run is not found (key is deterministic based on date + hour).
This will avoid PagerDuty from sending the same alerts in every run
during the check period. For each check, two key patterns of a new
incident will be created:

	jobname: stores latest state for a check (success or failure)

	alert key: stores pagerduty submission informaton

Below are a few helpful redis commands:

	connect to redis cli, assuming database 1 will be used for
robopager: redis-cli -n 1

	list keys based on pattern: keys * or keys key_name*

	get all fields within a hash (Robopager stores all keys as
hashes): hgetall key_full_name

	Robopager submits to PagerDuty using a deterministic key, therefore
you can have multiple Robopager instance running (for redundancy
without producing duplicate tickets). There is a special offset_sec
parameter in the PDInteraction class, setting this will have a
specific server wait the specified number of seconds before checking
state, and subsequently triggering incidents in Pagerduty. This will
prevent unnecessary API calls.

	Robopager will not yet reload the checklist.yaml if changed, it will
need to be restarted

	Finally, this is not a very sophisticated application (this
simplicity is deliberate), we are using features like threading and
some 0.x modules. So, we suggest rebooting or restarting the service
often (weekly or daily) to avoid the unnecessary crash-down of the
checks

Development

Getting Started

It is recommended to use the steps below to set up a virtual environment
for development:

python3 -m venv <virtual env name>
source <virtual env name>/bin/activate
pip install -r requirements.txt

Testing

pip install -r requirements-dev.txt

To run the testing suite, please modify the credentials in test_data
folder, then simply run the command:

python3 -m unittest discover tests

Contributing

Contributions to Robopager are welcome! Please reference guidelines to
help with setting up your development environment here [https://github.com/equinoxfitness/robopager/blob/master/CONTRIBUTING.rst]

Index

 nav.xhtml

 Table of Contents

 		
 Robopager

_static/plus.png

_static/file.png

_static/minus.png

